Tissue Spectroscopic Characterization Based on Fluorescence , Second Harmonic Generation , and Reflected Light
نویسندگان
چکیده
The diagnosis of many diseases often requires a histological analysis of tissues. Histology analysis compares the microscopic structure of a tissue specimen with an image database containing known physiological and pathological tissue structures. Three new microscopy technologies are developed to complement histology based on novel contrast mechanisms to better visualize and understand tissue structure and function: two-photon spectral resolved imaging, tri-modal imaging, and interferometric second harmonic imaging. First, two-photon spectral resolved microscopy utilizes the 3D localization ability of two-photon excitation to extract spectroscopic information from a femtoliter volume in tissue. The method is capable of the identification of biochemical species in tissues based on their morphological and spectral signatures. This system incorporates two new spectral analysis methods spectral image guided analysis and multivariate curve resolution. This instrument has been applied to the study of human skin luminescence species and in a photoaging study of a skin equivalent model. Second, tri-modal microscopy combines two-photon fluorescence with second harmonic imaging and reflected light optical coherence microscopy. In this tri-modal system, fluorescence imaging maps fluorophore distribution; second harmonic imaging maps biological crystalline structures such as collagen and microtubules; reflected light optical coherence microscopy maps index of refraction heterogeneity. The ability of this trimodal microscope has been demonstrated in the imaging of black tetra fish scale and in ex vivo human skin. Third, interferometric second harmonic microscopy has the potential for imaging deeper second harmonic active structures in tissues. This enhancement is based on phase coherent detection allowing the separation of multiple scattered light from the ballistic second harmonic signal. We have implemented interferometric second harmonic microscopy in epi-imaging mode and demonstrated coherent imaging of non-linear optical crystals. Thesis Supervisor: Peter So Title: Associate Professor of Mechanical Engineering
منابع مشابه
Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence.
Multiphoton microscopy relies on nonlinear light-matter interactions to provide contrast and optical sectioning capability for high-resolution imaging. Most multiphoton microscopy studies in biological systems have relied on two-photon excited fluorescence (TPEF) to produce images. With increasing applications of multiphoton microscopy to thick-tissue "intravital" imaging, second-harmonic gener...
متن کاملConsiderably Enhanced Second-Harmonic Generation in Resonant U-Shaped Nano-Structures
In this paper, we perform a detailed study of the spectral response of the gold U-shaped nano-structures for different geometrical parameters and polarizations in order to obtain significant localization factor in the wavelength 1.55 μm. The obtained near-field distribution of electric fields reveals that resonances in these nano-structures correspond to the even and odd plasmonic modes dependi...
متن کاملGalerkin Finite-Element Method for the Analysis of the Second Harmonic Generation in Wagon Wheel Fibers
The nonlinear effects of the second harmonic generation have been investigated for the propagation of light along the axis of fibers of wagon wheel cross sectional shape. Nodal finite element formulation is utilized to obtain discretized Helmholtz equations under appropriate boundary conditions. The hierarchical p-version nodal elements are used for meshing the cross section of wagon wheel fibe...
متن کاملIntegrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy
An integrated microscope that combines different optical techniques for simultaneous imaging is demonstrated. The microscope enables spectral-domain optical coherence microscopy based on optical backscatter, and multiphoton microscopy for the detection of two-photon fluorescence and second harmonic generation signals. The unique configuration of this integrated microscope allows for the simulta...
متن کاملTheoretical and experimental study of second harmonic generation from the surface of the topological insulator Bi2Se3
We develop a theoretical model that describes the second harmonic generation of light from the surface of the topological insulatorBi2Se3 and experimentally demonstrate that the technique is sensitive to the surface electrons. By performing a crystal symmetry analysis of Bi2Se3(111) we determine the nonlinear electric susceptibility tensor elements that give rise to second harmonic generation. ...
متن کامل